Two Generalizations of the Gleason-kahane-z̀elazko Theorem

نویسنده

  • Erik Christensen
چکیده

In this article we obtain 2 generalizations of the well known Gleason-Kahane-Z̀elazko Theorem. We consider a unital Banach algebra A, and a continuous unital linear mapping φ of A into Mn(C) – the n × n matrices over C. The first generalization states that if φ sends invertible elements to invertible elements, then the kernel of φ is contained in a proper two sided closed ideal of finite codimension. The second result characterizes this property for φ in saying that φ(Ainv) is contained in GLn(C) if and only if for each a in A and each natural number k: trace(φ(a)) = trace(φ(a)) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost multiplicative linear functionals and approximate spectrum

We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...

متن کامل

Gleason-kahane-Żelazko theorem for spectrally bounded algebra

We prove by elementary methods the following generalization of a theorem due to Gleason, Kahane, and Żelazko. Let A be a real algebra with unit 1 such that the spectrum of every element in A is bounded and let φ : A→ C be a linear map such that φ(1) = 1 and (φ(a))2 + (φ(b))2 = 0 for all a, b in A satisfying ab = ba and a2 + b2 is invertible. Then φ(ab) = φ(a)φ(b) for all a, b in A. Similar resu...

متن کامل

Some generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness

In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...

متن کامل

A new characterization for Meir-Keeler condensing operators and its applications

Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...

متن کامل

Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications

In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997